Search results

Search for "solid electrolyte" in Full Text gives 30 result(s) in Beilstein Journal of Nanotechnology.

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • compositions such as Li7Ge2, Li9Ge4, and Li22Ge2 [53][54][55]. The remaining shoulder can be ascribed to the decomposition of the electrolyte and the formation of solidelectrolyte interface (SEI) layers [55][56]. In the following cycles, the signal of the SEI layer formation at a potentials of 0.3 V vs Li/Li
PDF
Album
Full Research Paper
Published 26 Jun 2023

Utilizing the surface potential of a solid electrolyte region as the potential reference in Kelvin probe force microscopy

  • Nobuyuki Ishida

Beilstein J. Nanotechnol. 2022, 13, 1558–1563, doi:10.3762/bjnano.13.129

Graphical Abstract
  • . Keywords: electrochemistry; Kelvin probe force microscopy (KPFM); reference electrode; solid electrolyte; Introduction Kelvin probe force microscopy (KPFM) is a scanning probe technique for imaging surface potentials on the nanometer scale [1][2][3][4]. Its operating principle is based on detecting the
  • electrode placed on a solid electrolyte (Li-ion conductor) substrate. The surface-potential distribution in the region across the solid electrolyte was measured with a DC voltage applied between the Au electrodes. During the KPFM measurements, the potential of each Au electrodes relative to the Li electrode
  • was monitored using a voltmeter. Our analysis showed that the changes in the surface potential at each Au electrode, measured relative to the surface potential in the solid electrolyte region, agreed well with the changes in the Au electrode potential monitored by the voltmeter. This finding
PDF
Album
Full Research Paper
Published 19 Dec 2022

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • electrolyte engineering, cell design, interlayers, or solid electrolyte interphases can be found elsewhere in excellent reviews [10][14][28]. Here, additionally, some patents are reviewed to examine the approaches that are followed to commercialize Na–S batteries. Finally, an outlook is provided on how far
  • the course of Na plating and stripping as the battery charges and discharges, respectively. There are numerous strategies to mitigate the dendrite and reactivity issues of metal Na anodes. Amongst the most investigated approaches concerning the former are the controlled formation of protective solid
  • electrolyte interphases (SEI) [66], while the latter is addressed by engineering of liquid and solid electrolytes [63]. Results show that these strategies have an undeniable positive influence on cycle stability and performance safety of sodium batteries [10]. Yet, there are currently also other strategies
PDF
Album
Review
Published 09 Sep 2021

Solution combustion synthesis of a nanometer-scale Co3O4 anode material for Li-ion batteries

  • Monika Michalska,
  • Huajun Xu,
  • Qingmin Shan,
  • Shiqiang Zhang,
  • Yohan Dall'Agnese,
  • Yu Gao,
  • Amrita Jain and
  • Marcin Krajewski

Beilstein J. Nanotechnol. 2021, 12, 424–431, doi:10.3762/bjnano.12.34

Graphical Abstract
  • V, corresponding to electrolyte decomposition and the resulting formation of a solidelectrolyte interface (SEI) layer [14][15][19][20][21][26][28][29][30][31][34][35][36][37][38][39][40][41][52]. In turn, the following discharge profiles slightly differ from the initial one. They are much shorter
  • circuit corresponding to the electrochemical impedance spectroscopy (EIS) measurements for the cell (a) before cycling, and (b) after cycling; Rf – contact resistance, RSEI – the solidelectrolyte interface (SEI) resistance, CSEI – the surface capacitance, Rct – the charge transfer resistance at the
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2021

Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries

  • Yuko Matsukawa,
  • Fabian Linsenmann,
  • Maximilian A. Plass,
  • George Hasegawa,
  • Katsuro Hayashi and
  • Tim-Patrick Fellinger

Beilstein J. Nanotechnol. 2020, 11, 1217–1229, doi:10.3762/bjnano.11.106

Graphical Abstract
  • were gradually substituted by graphite in commercial LIB cells, and one of the main limitations in current SIB research, is the relatively high irreversible capacity due to the formation of a solid electrolyte interface (SEI) layer. The irreversible capacity is believed to originate from electrolyte
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • solid electrolyte interface (SEI) on graphite anodes and HOPG [14][15][16], Li metal [17] and on cathode materials [18][19] as well as the changes in particle size during ageing [19][20]. Other AFM modes used for the analysis of ageing are, for example, Kelvin probe force microscopy (KPFM) and
  • capacity loss from first charge to first discharge is attributed to surface layer generation (anode: solid electrolyte interface, SEI; cathode: solid permeable interface, SPI) on both electrodes, since they were rinsed before the full-cell assembly. After the first cycle, the capacity stays constant (not
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Antimony deposition onto Au(111) and insertion of Mg

  • Lingxing Zan,
  • Da Xing,
  • Abdelaziz Ali Abd-El-Latif and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2019, 10, 2541–2552, doi:10.3762/bjnano.10.245

Graphical Abstract
  • formation of a solid electrolyte interface (SEI) layer in Li systems. One of the main challenges in the commercialization of Mg-ion batteries is the incompatibility of the magnesium anode with the electrolytes because of the formation of this Mg2+ film. Recently, Sb has been suggested as an alternative
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • nanoarchitectonics (controlled single atom/ion transfer) to regulate the number of dopant atoms in one-dimensional solid electrolyte nanodots (α-Ag2+δS) [127]. The nanoarchitectonic construction of one-dimensional nanowires from II–VI semiconductors was demonstrated for the use as wavelength division multiplexer as
PDF
Album
Review
Published 30 Jul 2019

Flexible freestanding MoS2-based composite paper for energy conversion and storage

  • Florian Zoller,
  • Jan Luxa,
  • Thomas Bein,
  • Dina Fattakhova-Rohlfing,
  • Daniel Bouša and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2019, 10, 1488–1496, doi:10.3762/bjnano.10.147

Graphical Abstract
  • the following Equation 3) and the decomposition of the electrolyte followed by the formation of a solid electrolyte interphase (SEI) layer [18][20]. The prominent anodic peak at ≈2.5 V results from the conversion of Li2S to sulfur and lithium ions (see the following Equation 4) [20]. During the
  • agents. After the initial loss of specific capacity due to the formation of the solid electrolyte interface, the composite delivers a specific capacity of 740 mA·h·g−1 at 0.1 A·g−1. Moreover, the material retains 91% of its capacity after 40 cycles. A high capacity retention was also observed after the
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films

  • Ivan Kundrata,
  • Karol Fröhlich,
  • Lubomír Vančo,
  • Matej Mičušík and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 1443–1451, doi:10.3762/bjnano.10.142

Graphical Abstract
  • LIPON battery in which the solid electrolyte consists of nitrogen-doped lithium phosphate, present several shortcomings. One of them is the use of sputtering [1] for the deposition of the thin layers. Inherently, sputtering does not yield coatings with high conformity on non-planar substrates. Low
PDF
Album
Full Research Paper
Published 18 Jul 2019

Hydrogen-induced plasticity in nanoporous palladium

  • Markus Gößler,
  • Eva-Maria Steyskal,
  • Markus Stütz,
  • Norbert Enzinger and
  • Roland Würschum

Beilstein J. Nanotechnol. 2018, 9, 3013–3024, doi:10.3762/bjnano.9.280

Graphical Abstract
  • remains to be clarified, but an elastic compression of the α-nuclei due to a structure-induced compressive stress at the solidelectrolyte interface is a plausible mechanism. As the PdHα-phase nucleates in a PdHβ-matrix, an additional compressive stress might be present due to the expanded lattice of the
PDF
Album
Full Research Paper
Published 10 Dec 2018

Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells

  • Mirco Ruttert,
  • Florian Holtstiege,
  • Jessica Hüsker,
  • Markus Börner,
  • Martin Winter and
  • Tobias Placke

Beilstein J. Nanotechnol. 2018, 9, 2381–2395, doi:10.3762/bjnano.9.223

Graphical Abstract
  • ; prelithiation; silicon/carbon composite; solidelectrolyte interphase (SEI); Introduction Since their market launch in 1991, the energy density of lithium-ion batteries (LIBs) has increased steadily. However, further improvements in terms of power density and energy density are essential to meet the rising
  • drastic volume changes during cycling hinder the formation of a dimensionally stable solid electrolyte interphase (SEI), as it is known for carbonaceous anodes, formed on the negative electrode surface from electrolyte decomposition products in the first charge/discharge cycles [18][19][20]. In the case
  • , the trapping of Li inside detached Si, exposure of fresh Si to the electrolyte and breaking and reformation of the solid electrolyte interphase (SEI) layer [16][21][22][24]. All these factors contribute to an ongoing capacity loss with each cycle, leading to poor capacity retention. With higher Si
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2018

Nanoscale electrochemical response of lithium-ion cathodes: a combined study using C-AFM and SIMS

  • Jonathan Op de Beeck,
  • Nouha Labyedh,
  • Alfonso Sepúlveda,
  • Valentina Spampinato,
  • Alexis Franquet,
  • Thierry Conard,
  • Philippe M. Vereecken,
  • Wilfried Vandervorst and
  • Umberto Celano

Beilstein J. Nanotechnol. 2018, 9, 1623–1628, doi:10.3762/bjnano.9.154

Graphical Abstract
  • generally a solid and dense material while crystalline conductive oxides are used for the anode and cathode. As a solid electrolyte is significantly safer compared to its flammable organic liquid counterparts, its use does represent a clear advantage [2]. Moreover, the presence of crystalline ordering in
  • and the solid electrolyte, which share the same open issues for their nanoscale physical characterization. All-solid-state lithium batteries are considered as promising energy storage devices to meet the requirements of a low-carbon society, therefore the development of a dedicated material metrology
PDF
Album
Supp Info
Letter
Published 04 Jun 2018

Synthesis of metal-fluoride nanoparticles supported on thermally reduced graphite oxide

  • Alexa Schmitz,
  • Kai Schütte,
  • Vesko Ilievski,
  • Juri Barthel,
  • Laura Burk,
  • Rolf Mülhaupt,
  • Junpei Yue,
  • Bernd Smarsly and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2017, 8, 2474–2483, doi:10.3762/bjnano.8.247

Graphical Abstract
  • immediate phases [88][89][90][91]. At the first discharge and charge process, the very high capacity may be caused by the formation of a solidelectrolyte interface. After several cycles at 50 mA/g, the capacity stabilizes to around 500 mAh/g and decreases to 220 and 130 mAh/g with the current density
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2017

Systematic control of α-Fe2O3 crystal growth direction for improved electrochemical performance of lithium-ion battery anodes

  • Nan Shen,
  • Miriam Keppeler,
  • Barbara Stiaszny,
  • Holger Hain,
  • Filippo Maglia and
  • Madhavi Srinivasan

Beilstein J. Nanotechnol. 2017, 8, 2032–2044, doi:10.3762/bjnano.8.204

Graphical Abstract
  • the reduction to Fe0, associated with the conversion reaction leading to metallic particles finely dispersed in Li2O and electrolyte decomposition with solidelectrolyte interface (SEI) formation [39]. From the second cathodic cycle onwards, the peaks from 1.5 to 1.3 V and at 1.1 V do not appear and
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2017

Fabrication of hierarchically porous TiO2 nanofibers by microemulsion electrospinning and their application as anode material for lithium-ion batteries

  • Jin Zhang,
  • Yibing Cai,
  • Xuebin Hou,
  • Xiaofei Song,
  • Pengfei Lv,
  • Huimin Zhou and
  • Qufu Wei

Beilstein J. Nanotechnol. 2017, 8, 1297–1306, doi:10.3762/bjnano.8.131

Graphical Abstract
  • nanofibers. As can be seen from Figure 7a, there was relatively large capacity fading in the first several cycles for both samples, which may be ascribed to the partial irreversible decomposition of the electrolyte, the incomplete decomposition of the solidelectrolyte interface (SEI) or a partial
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2017

Vapor deposition routes to conformal polymer thin films

  • Priya Moni,
  • Ahmed Al-Obeidi and
  • Karen K. Gleason

Beilstein J. Nanotechnol. 2017, 8, 723–735, doi:10.3762/bjnano.8.76

Graphical Abstract
  • . Gleason and coworkers, having previously shown pV4D4 as potential solid electrolyte, are exploring the Si nanowire assembly in Figure 8a as a route toward anodes for micro lithium ion batteries [39]. Figure 9e shows a corresponding, conformal pV4D4 coating on a lithium spinel oxide particle, a material
PDF
Album
Review
Published 28 Mar 2017

Carbon nanotube-wrapped Fe2O3 anode with improved performance for lithium-ion batteries

  • Guoliang Gao,
  • Yan Jin,
  • Qun Zeng,
  • Deyu Wang and
  • Cai Shen

Beilstein J. Nanotechnol. 2017, 8, 649–656, doi:10.3762/bjnano.8.69

Graphical Abstract
  • -MWCNT were 710 and 300 mAh·g−1 with a coulombic efficiency of 42%. The large capacity fading and low coulombic efficiency observed for the electrode in the first cycle can be ascribed to irreversible processes such as formation of a solidelectrolyte interface (SEI) film and the decomposition of
PDF
Album
Full Research Paper
Published 17 Mar 2017

Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries

  • Chao Yan,
  • Qianru Liu,
  • Jianzhi Gao,
  • Zhibo Yang and
  • Deyan He

Beilstein J. Nanotechnol. 2017, 8, 222–228, doi:10.3762/bjnano.8.24

Graphical Abstract
  • the current collector). To verify the structural transformation of the Si anode after cycling, a battery after 50 cycles at a rate of 2 A/g was disassembled. The Si anode was washed thoroughly with deionized water and ethanol to remove the Li2O and solid electrolyte interphase layer. The morphology of
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2017

Microwave synthesis of high-quality and uniform 4 nm ZnFe2O4 nanocrystals for application in energy storage and nanomagnetics

  • Christian Suchomski,
  • Ben Breitung,
  • Ralf Witte,
  • Michael Knapp,
  • Sondes Bauer,
  • Tilo Baumbach,
  • Christian Reitz and
  • Torsten Brezesinski

Beilstein J. Nanotechnol. 2016, 7, 1350–1360, doi:10.3762/bjnano.7.126

Graphical Abstract
  • ) indicates that irreversible reactions occurred upon lithiation, including decomposition of surface ligands and formation of a solid electrolyte interface (SEI) on the nanoparticles. However, this relatively large capacity loss (≈30%) was limited to the initial cycle. The electrochemical reaction of ZFO with
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2016

Improved lithium-ion battery anode capacity with a network of easily fabricated spindle-like carbon nanofibers

  • Mengting Liu,
  • Wenhe Xie,
  • Lili Gu,
  • Tianfeng Qin,
  • Xiaoyi Hou and
  • Deyan He

Beilstein J. Nanotechnol. 2016, 7, 1289–1295, doi:10.3762/bjnano.7.120

Graphical Abstract
  • capacity is 900.1 mAh g−1, leading to a coulombic efficiency of 75.8%. The capacity difference between the initial charge and discharge mainly owes to the electrochemically driven electrolyte degradation, which results in the formation of solid electrolyte interface (SEI) films on the surface of electrode
PDF
Album
Full Research Paper
Published 14 Sep 2016

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
  • degrade exposed to direct contact with metallic lithium [16]. Moreover, by employing beta-alumina, an excellent Na-ion conducting solid electrolyte is commercially available. The total number of known sodium compounds is larger compared to lithium, so cell reactions might require more intermediate steps
  • in the case of NaO2 as a discharge product, (2) a higher tolerance against atmospheric nitrogen as no stable nitride exists, (3) cell concepts with a molten sodium electrode [26], or (4) the availability of beta-alumina as a solid electrolyte that might enable cell concepts including solid membranes
  • discharge and charge [70]. Analogous to the lithium–sulfur batteries, the use of lithium nitrate (LiNO3) seems to improve the cyclability of Li/O2 cells as well. In publications by Liox Power Inc., it was shown that LiNO3 leads to an improved stability of the lithium electrode solid electrolyte interphase
PDF
Album
Review
Published 23 Apr 2015

Electrocatalysis on the nm scale

  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2015, 6, 1008–1009, doi:10.3762/bjnano.6.103

Graphical Abstract
  • description of processes occurring at the electrochemical solid–liquid interface. The experimental methods provide, at least in principle, the opportunity to gain insight into the processes occurring at the solidelectrolyte interface on an unprecedented, atomic/molecular level. The theory has not only
PDF
Editorial
Published 21 Apr 2015

Multiscale modeling of lithium ion batteries: thermal aspects

  • Arnulf Latz and
  • Jochen Zausch

Beilstein J. Nanotechnol. 2015, 6, 987–1007, doi:10.3762/bjnano.6.102

Graphical Abstract
  • under high voltages and chemical compatible with the chosen electrode materials. Thus, additives are used in order to enhance the ionic conductivity and to improve the chemical compatibility. Also the properties of the solid electrolyte interphase (SEI) on the negative electrodes, which is essential for
PDF
Album
Full Research Paper
Published 20 Apr 2015

Stick–slip behaviour on Au(111) with adsorption of copper and sulfate

  • Nikolay Podgaynyy,
  • Sabine Wezisla,
  • Christoph Molls,
  • Shahid Iqbal and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2015, 6, 820–830, doi:10.3762/bjnano.6.85

Graphical Abstract
  • obtained at the solid/gas interface are also valid at the solid electrolyte interface. In this paper we present the results of investigations of friction forces during UPD and dissolution of Cu/Au(111) and also during sulfate adsorption in sulfuric acid solution. We extend previous measurements to lower
PDF
Album
Full Research Paper
Published 26 Mar 2015
Other Beilstein-Institut Open Science Activities